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1. Lecture - The axioms

1.1. Some background. The theory of multi-norms given here
assumes a background in normal functional analysis, at the level of a
masters course; we mention here some notation that we shall use (see
also [1]) and a few extra points that may not be covered in such a
course.

Linear spaces are always supposed to be over the complex field C,
unless stated otherwise; however an analogous theory for spaces over
R is also given in [2]. The real space underlying a linear space E is
denoted by Eg.

The closed unit ball of a normed space E is denoted by Ef;.

Let E and F be normed spaces, and let T' € B(E, F'), the space
of bounded linear operators from F to F. Then the dual T" of T is
defined by the equation

(x, T'\) = (Tz, \) (xe€ E,\€F');

we have T" € B(F', E') and ||T"|| = ||T'||. The space E'is linearly homeo-
morphic to F if there is a bijection T' € B(E, F') with T~! € B(F, E);
such a map T is a linear homeomorphism or an isomorphism. In this
case, the Banach—Mazur distance from E to F' is

d(E,F) =f{|T|||T7"||: T € B(E, F) is an isomorphism}.

The projective tensor product of E and F' is denoted by (E® F, );
its completion is (E ® F, ).
Several proofs implicitly use Holder’s inequality in the following

form. Take p > 1, and let ¢ be the conjugate index to p. Then, for
each f € LP(Q) and g € L4(2), we have fg € L*(Q) and

[ira=([1r) ” (f |g|Q)1/q .

We shall refer to the standard Banach sequence spaces (P = (?(N)
for p € [1,00] and the space ¢y of null sequences; we write §; for the
sequence (0;; : j € N).

Let m,n € N. Then we can identify M,,,, with the Banach space
B¢, ﬁr‘,’f) so that (M, ,, || - ||) is a Banach space. Indeed, the formula
for the norm in M,, ,, of an element a = (a;;) is then

(1.1) |al| = |la: 60 — €] = maX{Z|aij~| = 1,...,m} :

j=1
In the case where m = n, we obtain a unital Banach algebra (M,,, || - ||).
More generally, let p,q € [1,00]. Then we can also identify M,, ,, with
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B(¢r. £4%), and denote the norm of a € M,,,, by |a: (P — £3]. For

exa?r;pﬂ;,
m

(1.2) Ha:ﬁé—>€}n”:max{zmij]:j:l,...,n} .
i=1

The final result is the principle of local reflexivity.

ProproOSITION 1.1. Let E be a Banach space, let X be a finite-
dimensional subspace of E", let F' be a finite subset of E', and take
e > 0. Then there is an injective linear map S : X — E with S | XNE
the identity on X N E, with ||S||]|S™!: S(X) — X|| <1+ ¢, and with

(SAA), N)=(A )N (AeF, AeX). -

1.2. The axioms. We begin with our definition of a multi-norm.
Here G, is the symmetric group on n symbols.

DEFINITION 1.2. Let (E.| -||) be a normed space. A multi-norm
on {E™:n € N} is a sequence

(-1 = - e N)

such that || - ||, is @ norm on E™ for each n € N, such that ||z|, = |||
for each x € E (so that |- ||, is the initial norm), and such that the
following Azioms (A1)—(A4) are satisfied for each n € N:

(A1) for each 0 € &,, and x € E™, we have
H(l‘a(l), . "'L‘U(”))Hn = H(l’l, ce ,[En)Hn ;
(A2) for each av,...,an € C and x € E™, we have
ey, oman )|, < (max|ag]) [[ (21, - @), 5
(A3) for each x1,...,x, € E, we have
H(xlu ces Ty O)Hn+1 = H(xl, .- 7$n)”n )

(A4) for each x1,...,x, € E, we have

H(mlv cee axnfhxmmn)HnJrl = H(xlv s ,xn,1,$n>Hn :
Now ((E™, || -|,) : » € N) is a multi-normed space.
DEFINITION 1.3. Let (E,||-||) be a normed space. A dual multi-

norm on {E" : n € N} is a sequence

1) = - m e N)
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such that || - ||, is @ norm on E™ for each n € N, such that ||z|; = |||
for each x € E, and such that the Azioms (Al), (A2), (A3) and the
following modified form of Aziom (A4) are satisfied for each n € N:

(B4) for each x1,...,x, € E, we have

(@1, Tty Ty ) [y = (@15 T, 220) ],

Now ((E™, || -|,) : » € N) is a dual multi-normed space.

We use the terms multi-Banach space and dual multi-Banach space
when (£, || -||) is complete; this ensures that each (E", | -]|,) is a Ba-
nach space.

1.3. Elementary consequences of the axioms. The following
are immediate consequences of the axioms for multi-normed and dual
multi-normed spaces. Many more easy consequences are given in [2].

Initially, we suppose that (F, || -||) is a complex normed space, and
that (||-||,, : » € N) is a sequence such that |||, is a norm on E"
for each n € N, such that ||z||; = ||z|| for each z € E, and such that
Axioms (A1l)—(A3) are satisfied. Thus our first two results apply to
both multi-normed spaces and to dual multi-normed spaces.

LEMMA 1.4. Let xq,...,x, € E, and (y,...,(, € T. Then

1(Czrs - s Guzn )l = (s za)lly, O
LEMMA 1.5. Let xy,...,x, € E. Then
max ||z < [|(z1,- - @)ll, < D llall < nmax ]| .
i=1 U

PROPOSITION 1.6. Let ((E™,|-|,,) : n € N) be a multi-normed
space, and let k € N. Set (;, = exp (27i/k). Then

k k
jm
§ § C}c Tm
j=1 ||m=1

1.4. Standard constructions.

(x1,...,2, € E).

| =

H(xlv S 7xk)||k <

PROPOSITION 1.7. Let ((E™,|-|,) : n € N) be a multi-normed
space.

(i) Let F be a linear subspace of E. Then ((F",|-||,):n € N) is a
multi-normed space.

(ii) Let F be a closed linear subspace of E. Then
(((E/E)" |- 1I,) = n € N)
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is a multi-normed space, where | -||,, is now defined by
||([L’1 +F,,$n+F)||n :1nf{||(y1,,yn)||n T € x;+ F (Z S Nn)}
forxzy,...,x, € E. O

1.5. Theorems on duality. Let (E,| - ||) be a normed space, let
n € N, and let |- ||, be any norm on the space E". The dual norm
on the space (E')" is denoted by ||-|||, so that, explicitly, for each
A,y A € B the value [[(Ar, ..., A\l is equal to

sup {

Now let ((E™,||-|l,) : » € N) be a multi-normed space or a dual
multi-normed space. Then it follows that ((E™)',|-]|.) is linearly
homeomorphic to (E')" (with the product topology from E’). Thus
we have defined a sequence (|| - ||, : n € N) such that |- |’ is a norm
on (E')" for each n € N. Clearly ||A||} = || A||" for each X € E'.

The following two theorems give the duality relations that we should
like.

n

> (wi Ay

j=1

2$1,...,$n€E7 ||(x177'1‘1n)||nS ]‘} :

THEOREM 1.8. Let ((E™, |- ||,) : n € N) be a multi-normed space.
Then (((E"™,||-]I)) : n € N) is a dual multi-Banach space. O

THEOREM 1.9. Let ((F™,||-],) : » € N) be a dual multi-normed
space. Then ((F)"]-]|) : n € N) is a multi-Banach space. O

1.6. Reformulation of the axioms. There are different ways of
characterizing multi-norms; some may be more attractive and natural
than the initial version. We give one reformulation here; another will
be given later

Let E be a linear space, and let m,n € N. Then M,,, acts as
a map from E™ to E™ in the obvious way; in particular, E" is a left
M,,-module. Our reformulation requires these actions to be ‘Banach’
actions, so that, for each m,n € N, we have

la - 2l < llalllll, (z€E", acMpuy),

where ||a]| = ||la : £5° — £:°|| denotes the norm of a as a map from £;°
to £;°. In particular, E” is a Banach left M,,-module. Let m,n € N,
and let

a=(a) € My,,.
Then a is a row-special matrix if, for each ¢ = 1,...,m, there is at
most one non-zero term, say a; j(;), in the i row.



THEOREM 1.10. Let (E,||-||) be a normed space, and let
(-1l - neN)
be a sequence of norms on the spaces E™, respectively, such that ||z||, =
lz|| (x € E). Then the following are equivalent:
(@) (|| -], : » € N) is a multi-norm on the family {E™ : n € N} ;
(b) lla - z||,, < llall||z||,, for each row-special matriz a € M, ,,
each x € E", and each m,n € N;

(c) lla - z|l,, < |la|| ||z],, for each matriz a € M,,,, each x € E",
and each m,n € N. O

There is a similar reformulation of the definition of a dual multi-
norm.

2. Lecture - The sequence (¢, (F))

2.1. An associated sequence. The sequence defined below mea-
sures the ‘rate of growth’ of a multi-norm.

DEFINITION 2.1. Let ((E™, || -],) : n € N) be a multi-normed space.
Forn € N, set

on(E) =sup {|[(@1,.. ., x|, : 21, .., 20 € Epy}.

Note that (¢, (F)) is not intrinsic to F; it depends on the multi-
norm, and so, strictly, we should write ¢, ((E™, || - ||,))) for ¢,(£). The
sequence (¢, (FE)) is increasing and convex.

2.2. The minimum multi-norm.

DEFINITION 2.2. Let (E, || - ||) be a normed space. Forn € N, define
[ [l,, on E™ by
11, wa) [ = max lzif| - (21, 20 € E)

)

This gives the minimum multi-norm.

Two multi-norms (|- ||} : 7 € N) and (|- ||? : n € N) are equivalent
if there exist constants C; and Cy such that

Cl ”(xl??xn)Hi < ||(I177$n)”711 < 02 ||(9517---a$n)||2

n

for all z1,...,2, € E and n € N.

PROPOSITION 2.3. Let ((E™,|-|,) : n € N) be a multi-normed
space such that E is finite-dimensional. Then (|||, : n € N) is equiv-
alent to the minimum multi-norm. O
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In fact, there are always multi-norms that are not equivalent to the
minimum multi-norm when is F is infinite-dimensional.

2.3. The maximum multi-norm. Let (E,||-|) be a normed
space. It follows from Lemma 1.5 that there is also a maximum multi-
norm (|- || :n € N).

We have

n
l@r, ooy za) 7™ < D sl -
j=1

But the right-hand side does NOT define a multi-norm. (In fact it is
a dual multi-norm.)
The sequence associated with the maximum multi-norm is denoted
max

by (@r*(E)). This sequence is intrinsic to £. We shall calculate it
for some examples soon.

PROPOSITION 2.4. Let (E, || - ||) and (F,|| - ||) be two linearly homeo-
morphic Banach spaces. Then

o (F) < d(E, F)pr™(E) (n€N). .

2.4. Summing norms. We recall some results on summing norms;
for nice introductions to this theory, see [4] and [5].

Let E be a normed space, let n € N, let x1,...,2z, € F, and take
p > 1. We define the weak p-summing norm:

n 1/p
,up,n(xla"'axn) = sup <Z|<x]7>‘>|p> : )‘GE[ll]
j=1

We note that

ulm(xl,...,a:n):sup{ :Cl,...,gne'll‘}.

n

) G
j=1
The next theorem shows how these norms fit into our scenario.

THEOREM 2.5. Let (E, || -||) be a normed space. Then (u1,, : n € N)
is a dual multi-norm on {E™ : n € N}, and

pin(z1, .. xn) < (@1, x)l,  (z1,...,2, € E)
whenever (|| -1, : n € N) is a dual multi-norm on {E"™ : n € N}. O

Thus (g1, : n € N) is the minimum dual multi-norm on the family
{E" :n e N}



2.5. Summing constants. The following definition is standard;
see [5].

DEFINITION 2.6. Let E and F' be normed spaces, let n € N, and
take p > 1. Then the summing constants of an operator T € B(E, F)
are the numbers

n 1/p
w]ﬁ")(T) = sup (Z HTa:ij) D (X1, mn) <1
j=1

Further, ﬂz(,n)(E) = W](gn)(l £); these are the summing constants of the
normed space E.

In particular,

ﬂ%m:m{me:Z@w
j=1 j=1

Spaces with the following property are important in Banach space
theory.

<1 (C1,...,Cn€']l‘)}.

DEFINITION 2.7. A Banach space E has the Orlicz property if

n 1/2
ne X
7j=1

THEOREM 2.8. Let (2, ) be a o-finite measure space, where 1 is a
positive measure, and take q € [1,2]. Then the Banach space LI(S, i)
has the Orlicz property. O

Let ¢ € [1,2]. The Orlicz constant associated with the space £9 is
denoted by C,, where we know that Cy = 1 and that C; < V2 4, 5].
Thus

7™M < Cp/n (neN).
In particular,
m(?) <V (neN).

It would be interesting to find the exact values of Wi”) (¢P) for each
m,n € N and p € [1,00].
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THEOREM 2.9. Let (E,||-||) be a normed space. Then

||max
n

|(x1,. .., 2,)

= sup {

= sup {Z (2, A A,y A € B (A, sA) < 1}
j=1

n

D (i )

j=1

2)\1,...,>\n€El, H’l,n()\l)'--a)\n)gl}

for eachn € N and @1, ... 2, € E. Further, the dual of || - || is 1,
for each n € N, and o™ (FE) is equal to

n

sup {Z NI A A € B (O, An) < 1} .
Jj=1

Thus
o (B) =m" (B).
U
THEOREM 2.10. Let (E,||-||) be a normed space. Then
(u’lm :n € N)
is the mazimum multi-norm on the family {(E')" : n € N}. O

In summary, we have the following.

Let (E,||-||) be a normed space. Then the maximum multi-norm
on the family {E™ : n € N} is denoted by (|||l : n € N). The
dual of this multi-norm is the minimum dual multi-norm on the family
{(E")" : n € N}, and this is exactly the multi-norm (u1, : n € N)
on {(E')" : n € N}, and this is the weak 1-summing norm. The dual
of the minimum dual multi-norm on the family {E™ : n € N} is the
maximum multi-norm on {(E")" : n € N}.

Combining these remarks, we have the following consequence.

COROLLARY 2.11. Let (E, || -||) be a normed space. Then the second
dual of the mazimum multi-norm (|| -7 :n € N) on {E™ : n € N} is
the mazimum multi-norm on {(E")" : n € N}. O

THEOREM 2.12. Let (E,||-||) be a normed space. Then

(B 1 I = (67 @ B,

for each n € N. O

Let Sg denote the unit sphere of a normed space F. (We shall
suppose henceforth that F' # {0}, so that Sr # 0.)
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DEFINITION 2.13. Let n € N, and let (F,||-||) be a normed space.
Then c,(F') is

inf{sup {||GA1 + -+ Gl 1 Gy oy G ET)H: Ay, oo, A € SE}

THEOREM 2.14. Let (F,||-||) be a normed space, and let n € N.
Then
m(F) - c(F) 2 n,
and so @P**(E) > n/c,(E") for each normed space E.

PROOF. Let 7; '(F) be the version of W%n)(F) in which we require,
further, that ||z1|| = - -+ = ||z,|| in the definition. Then it is clear that

T (F) < 7" (F) and that 7" (F) - ¢,(F) = n. -

We conjecture that, for each normed space E, or perhaps for a
reasonable class of ‘well-behaved’ spaces E, there is a constant Cg
independent of n such that ¢2**(E) < Cgn/c,(E’) (n € N). Is this

true for all spaces with the Orlicz property?

2.6. The function ¢;'** for some examples. We can calculate
pmax(F) for most standard Banach spaces F; here are some examples;

more are given in [2].
THEOREM 2.15. (i) For each p € [1,2], we have
PI(00) = () =l (m € N)s

(il) For each p € [2,00], we have
Vi S @it (Eh) < ™ (L") < Covn (n€N),

where q is the conjugate index to p. O

We do not know the exact best constant that could replace C; in
the above inequality.

2.7. A lower bound for ¢ *(E). We shall use a famous the-
orem of Dvoretzky, sometimes called the theorem on almost spherical

sections.

THEOREM 2.16. For eachn € N ande > 0, there exists m = m(n,¢)
in N such that, for each normed space E with dim £ > m, there is an
n-dimensional subspace L of E such that d(L,0?) <1 +e. O

THEOREM 2.17. Let E be an infinite-dimensional normed space.
Then c,(E) < \/n and ¢*(FE) > /n for each n € N,

n
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Proor. Fix n € N. By Dvoretzky’s theorem, for each € > 0,
there is an n-dimensional subspace L in F such that d(L,(?) < 1+ e.
Certainly ¢, (E) < ¢,(L).

Since d(L, (%) < 1+ ¢, it follows from the definition of ¢, (L) that
cn(L) < (14 €)%, (02). But ¢,(¢2) = v/n, and so ¢,(F) < (1 +¢)*/n.
This holds for each € > 0, and hence ¢, (E) < /n.

That @ *(E) > /n for each n € N follows immediately from

n

Theorem 2.14. O

2.8. Another characterization of multi-norms. Let FE be a
normed space. Form the algebraic tensor product ¢y ® E. A cross-
norm on ¢y ® E is a norm || - || such that ||a ® z|| = ||a|| ||z]| for each
a € cgand x € E. This norm is a cy-norm if, further, T'® I g is bounded
on (co® E, || -||) by ||T|| for each compact operator T on c.

THEOREM 2.18. (Daws) Let E be a normed space. Then there is a
canonical bijection between the family of multi-norms based on E and
the family of co-norms on co @ F.

PROOF. Start from a co-norm || - || on ¢g ® E. Define
Iz, =D 6@l (x1,....20 € E).
J=1 0

In the above correspondence, the minimum and maximum multi-
norms correspond to the injective and projective tensor products on
co ® E, respectively.

3. Lecture - Examples of multi-norms
3.1. The standard (p, ¢)-multi-norm.

EXAMPLE 3.1. Let Q = (€, ) be a o-finite measure space, where
is a positive measure, and take p,q with 1 < p < ¢ < co. We consider
the Banach space E = LP(2), with the norm

= ([ |f|”)1/p = ([ an) " en).

For a measurable subset X of €2, we write rx for the seminorm on

E specified by
1/p
= (f1r) " ten.
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Take n € N. For each partition X = {Xj,..., X,,} of Q into meas-
urable subsets and each fi,..., f, € E, we set

TX((fl, cee fn)) = (TX1<f1)q 4+ .4 TXn(fn)q)l/q

_ <</X1|f1|p>q/p+...+ (/X fnp)q/p)l/q’

so that rx is a seminorm on E™.
Finally, define

I(frs oo f) |9 = sup (1o fu)) - (oo fu € B),

where the supremum is taken over all such families X. Then |||, is a
norm on E".

It is easily checked that (|||, : » € N) is a multi-norm on the
family {E™ : n € N}. It is the standard (p, q)-multi-norm. O

PROPOSITION 3.2. In each of the above cases, the standard (1,1)-
multi-norm on {L'(Q)" : n € N} is equal to the mazimum multi-norm.
However this is not true for the standard (p, p)-multi-norm on € for
any p > 1. 0

ExAMPLE 3.3. Let €2 be a non-empty, locally compact space. We
now denote by M(2) the Banach space of all complex-valued, regular
Borel measures on ). Take ¢ > 1.

For each partition X = {Xj,..., X,,} of Q into measurable subsets
and each py, ..., u, € M(Q), we set

rx((pns o)) = Ul | X"+ i | Xl

so that rx is a seminorm on M (Q)™ and

rx (s i) < (Il 4+ Nl DY Gy i € M(Q)).
Finally, we define

(ks s )], = sup rx((py s ptn)) (pas- s € M(Q)),

where the supremum is taken over all such families X. Then |||, is
a norm on M(Q)", and it is again easily checked that (|||, : n € N)
is a multi-norm on {M(Q)" : n € N}. It is the standard (1, q)-multi-
norm. U

Let 2 be a non-empty, locally compact space, and set £ = L*(Q).
Then E' = L>(f2), a commutative C*-algebra, and so this is C'(Q2) for
some compact space §). Thus E” = M (). Start with the standard
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(1, ¢)-multi-norm on {L'(Q)" : n € N}: then we can compare the stan-
dard (1, ¢)-multi-norm on M (£2) with the second dual of the standard
(1, ¢)-multi-norm on L'(€). In fact, happily they are the same - but
this seems to be quite hard; the proof of this also uses the principle of
local reflexivity.

3.2. The Hilbert multi-norm.

ExamMpPLE 3.4. Let H be a Hilbert space. Then H can be repre-
sented as the Banach space £%(S) for a set S of vectors in H. Thus from
each such set S and each ¢ with 2 < ¢ < 0o, we obtain the standard
(2, ¢)-multi-norm (|| - Hf’p) :n € N) on {H" : n € N}, as above.

Now we introduce another multi-norm on this family; it is the
maximum that we can obtain by considering all such representations
of H. Take n € N. For each family H = {H,,..., H,} such that
H=H, L--- 1 H, (which means that H = H; ® --- ® H,, and that
the closed subspaces Hy, ..., H, of H are pairwise orthogonal), set

1/2
ra((zn, . wn) = (|Paa]®+ -+ | Paaa]?)
= ||P11‘1 +..+Pnajn||

forzy,...,x, € H, where P, : H — H,; fori =1,... nisthe orthogonal
projection, and then set

H
[

|(z1,. .., 2) :s%[p ra((z1,...,2,)) (21,...,2, € H),

where the supremum is taken over all such families H.

It is easily checked that (||-||” : n € N) is a multi-norm on the
family {H™ : n € N}. This is the Hilbert multi-norm on the family
{H" :n € N}. O

PrROPOSITION 3.5. Let H be a Hilbert space, and let n € N. Then

H
I

H(xla <. 7xn) = Sup{‘&l[elaxl] T+t an[enamn]l}

for xy,... x, € H, where the supremum is taken over all orthonormal
sets {e1,...,en} in H and all (aq,...,an) € (£3)n). O

Question Is the Hilbert multi-norm the maximum multi-norm on
the family {H™ : n € N}? This seemed to be very likely because I
could not think of a bigger one. However it seems to be rather a hard
question.

In fact it can be reduced to a question about Hilbert spaces that
does not mention multi-norms; possibly the answer to this question is
already known.
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Let H be a Hilbert space. Then the closed unit ball of the dual of
(H™, || |7 is described as follows. Set

S = U {(Qlel,-'-aanen> : Z|aj|2 < 1} )
j=1

where the union is taken over all orthonormal subsets {ej,...,e,} of
H. The required unit ball is the weak-*-closed convex hull of S, call it
K.
On the other hand, the closed unit ball of the dual of (H™, || - ||**)
is
{y=(0- - y) € H" - pun(yn, - yn) < 1}
this set, temporarily called L, is equal to

{y=(1 ) € H" G+ + Gl <1 (G- G €T}

Since |- | < || - ||, necessarily K C L.
To establish the equality of the two multi-norms, we need to show
that L C K for each (implicit) n € N. In fact we need

exLCexK =S8 (neN),

where ‘ex’ denotes the set of extreme points of a convex set. Is this
always the case? This question does not mention multi-norms. For
each n € N, it is sufficient to consider Hilbert spaces of dimension n.
Towards this, I know the following.

THEOREM 3.6. Let H be a Hilbert space of dimension n.

(i) Suppose that n = 2. Thenex L C S.

(ii) Suppose that n = 3 and H is a real Hilbert space. Then this
fails.

(iii) (Pham) Suppose that n =3 and H is complex. Thenex L C S.

(iv) (Daws) There is a universal constant C' with C'|| - ||f > -1
and so the Hilbert multi-norm s equivalent to the mazimum multi-
norm. U

(In fact the best C' in (iv) that we know involves Grothendieck’s con-
stant.)

3.3. The lattice multi-norm.
EXAMPLE 3.7. Let (E, ]| -||) be a Banach lattice. For n € N, set
Nns @l = et VoV feal | (@10 € B).
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It is easy to check that ((E™, | -||,) : n € N) is a multi-Banach space.
The sequence (|||, : n € N) is called the lattice multi-norm. On the
other hand, by setting

”(xl?""'rn)nn: H |ZE1|+~~-—|—|1’”| || (Il’---wrn S E)7

we obtain a dual multi-norm, the dual lattice multi-norm.

It is fairly straightforward to check that the dual of the latttice
multi-norm on {E" : n € N} is the dual lattice multi-norm on the
family {(E’)" : n € N}, and that the dual of the dual latttice multi-
norm on {E™ : n € N} is the lattice multi-norm on {(E’)" : n € N}.

More specifically, we have the following examples:

1) Let £ = C(Q2) for a compact space 2. Then the lattice multi-
norm is just the minimum multi-norm.

2) Let E = M(Q) for a measure space €. Then the lattice multi-
norm is just the standard (1, 1)-multi-norm.

3) Let E = LP(Q2) for a measure space 2 and p > 1. Then the
lattice norm is the standard (p, p)-multi-norm. O

4. Lecture - Multi-bounded linear operators

4.1. Topological linear spaces and multi-norms. There is a
theory - it generalizes that of multi-normed spaces to give a theory of
multi-topological linear spaces. It is specified in [2], but it is more-or-
less what one would expect, and so we do not give it here. It includes
the concept of multi-null sequence, for which we write

Limx; =0 in F.

1—00
Having obtained a general concept, we can reduce back to a multi-
normed space. We obtain the following.

THEOREM 4.1. Let ((E™,||-||,) : n € N) be a multi-normed space.
Take (z;) € EN. Then (x;) is a multi-null sequence in E if and only if,
for each € > 0, there exists ng € N such that

sup ||(xn+1a--'7xn+k>”k <e (nZnO)
keN 0

There is a version of Kolmogorov’s theorem.
EXAMPLE 4.2. Let (;) be a fixed element of CN, and set

(i) Let E be one of the Banach spaces ¢? (for p > 1) or ¢qo. Let
(|l -1, : » € N) be the minimum multi-norm on {E™ : n € N}. Then
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(x;) is a multi-null sequence in F if and only if lim; .., o; = 0, i.e., if
and only if (a;) € ¢g. This is independent of the choice of the space E.

(ii) Let £ = ¢? (where p > 1), and let (|||, : » € N) be the
standard (p, p)-multi-norm on {E™ : n € N}. Then (z;) is a multi-null
sequence in F if and only if

o 1/p
lim (Z |az.|p> o,

i=n

i.e., if and only if () € 7. O

4.2. Multi-null sequences and order-convergence. A new the-
ory should reduce to something familiar when we restrict to a familiar
situation; we shall consider this first in the context of lattice multi-
norms.

Let E be a Banach lattice, as above, and let (x,) be a sequence
in F. Recall that (x,) is order-null if there is a sequence (u,) in Fg
such that u, | 0 and |z,| < u, (n € N). The lattice multi-norm on
{E" : n € N} was defined by

[, an)ll, = e VeVl | (2.2 € E)

for each n € N. We shall consider multi-null sequences with respect to
this multi-norm.

THEOREM 4.3. Let E be a Banach lattice. Then each multi-null
sequence in E is order-null in E. 0

THEOREM 4.4. Let (E, || -||) be a Banach lattice. Then each order-
null sequence in E is multi-null in E if and only if the norm is o-order-

continuous, i.e., ||x,|| | 0 whenever (x,) is a sequence in E such that
Tn | 0. 0

For example, this applies to the spaces LP(Q2) with the standard
(p, p)-multi-norm when p > 1.

4.3. Multi-continuous operators. Here is the obvious defini-
tion.

DEFINITION 4.5. A linear map between two multi-topological linear
spaces is multi-continuous if it maps multi-null sequences into multi-
null sequences.
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4.4. Multi-bounded sets and maps. There is a general concept
of a multi-bounded set in a multi-topological linear space. A linear map
between such spaces is multi-bounded if it takes multi-bounded sets into
multi-bounded sets. Again we give the definition just in the context of
multi-normed spaces.

DEFINITION 4.6. Let ((E™, || -],) : n € N) be a multi-normed space,
and let B be a subset of E. Then B is multi-bounded in E if

cg :=sup{|[(z1,...,2,)], 1 21,..., 2, € B,n € N} < 00.

For example, in most Banach lattices, a set is multi-bounded in the
lattice multi-norm if and only if it is order-bounded in the lattice.

The space of multi-bounded maps from E to F' is denoted by
M(E, F). Clearly it is a linear subspace of B(E, F).

DEFINITION 4.7. Let ((E™, || -|,,) : n € N) and ((F",||-||,) : n € N)
be two multi-normed spaces, and let T be a multi-bounded linear oper-
ator from E to F. Then

|T||,,p = sup {crmy : cg < 1}

The map T is a multi-contraction if |||, < 1, and T is a multi-
isometry iof T' is an isometry onto a closed subspace T'(E) of F' and if
T e M(E,T(E)) and T~' € M(T(E), E) are both multi-contractions.

It is clear that || -||,,, is a norm on the space M(E, F).
Indeed, for n € N, set

Pu(T) =sup {|[(Txq, ..., Txy,), : [[(x1,...,z,), < 1}.

Then (p,(T) : n € N) is an increasing sequence with
[Tl = lim p (1.

Clearly we have

|(Txq,...,Tx,)||
Lo (2, ) 0 < 00.
(21, ..., 20)l,

The next basic proposition shows that we are establishing a multi-
version of another very basic result in functional analysis.

THEOREM 4.8. Let ((E™,||-||,) : n € N) and ((F",||-||,) : n € N)
be two multi-normed spaces. Then a map T € L(E,F) is multi-
continuous if and only if it is multi-bounded. O

7)., = sup sup{

In the following theorem, N'(E, F') denotes the space of all nuclear
operators from F to F'; the nuclear norm is denoted by v.
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THEOREM 4.9. Let ((E™,|-],) : » € N) and ((F™,|-|,) : n € N)
be multi-normed spaces, with F' a Banach space. Then

(M(E,F) | )
1s a Banach space. Further,
(N(E,F),v) C (M(E,F), || ]l,s) C (B(E,F), [|-1]),
and the natural embeddings are contractions. O

A key point in standard functional analysis is that, if £ and F' are
Banach spaces, then so is B(F, F'); we stay in the category when we
take morphisms. We would like to do the same in the multi-context.
Happily, this works.

DEFINITION 4.10. Let
(B - [l,) :neN) and ((F"]-],) : n € N)
be multi-normed spaces, and let n € N and Ty,...,T, € M(E,F).
Then
(T Do)l = sUP{eryByu-uT(B) €8 < 1}

The supremum is always finite.

More explicitly, choose kq,...,k, € N, and set k = k; + --- + k,.
Then take zi,..., 2, € E with ||(z1,...,24)|, < 1, and consider the
element Tx € F* specified by

Txr = (Tlxl, Ce ,Tlxkl,
Tgl’kﬁ_l, .. 7T2xk1+k27 ce 7Tn~rks1+k2+~~-+kn,1+17 ce ,TnCL’k) .
We see that
1Ty, - Tl = sup AT}

where the supremum is taken over all choices satisfying the prescribed

conditions. In particular, |[(T1,. .., Tn)ll,p, = max || T3],

THEOREM 4.11. Let ((E™, ] -]|,,) : n € N) and ((F",||-||,) : n € N)
be multi-normed spaces. Then each |-, is a norm on the linear
space M(E, F)", and

(MCE,E)" - o) - €N)

is a multi-normed space with [T, 1 = [|T||,,,; it is a multi-Banach

space in the case where F is a Banach space. O
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4.5. Examples.

EXAMPLE 4.12. Let H be the Hilbert space £?(N), with the stan-
dard (2,2)-multi-norm.

Consider the system of vectors (22 :r =1,...s,s € N) in H defined
as follows: z%(k) = 0 except when k € {2571 ... 2% — 1}; at the 257!
numbers k in the set {2571, ... 25 — 1}, 25(k) = £1/v/2571, the values
+1 being chosen so that [x5 25 | = 0 whenr, 7o = 1,..., sand rq # ro.

717 ”r2
Such a choice is clearly possible. Then

S:={x):r=1,...,s,s € N}

is an orthonormal set in H. Order the set S as (y,) by using the
lexicographic order on the pairs (s, 7).
Let (a;) € £°°. We define an operator T' € B(H) by setting

S S
Tz) = agd, when z;=1y,.

It is clear that, in the case where (o;) € ¢o, we have T' € IC(H).
For k € N, set N, = S0 i = k(k 4+ 1)/2. We see that

2
H(ylvy%'"?yNk)HNk =k.

However
H(T?/hTyz,---,TyNk)H?Vk = \|(a151,a252,a253,04354,---yak5N,€)H?Vk
2
= Z’l|0ﬁ| :
i1

Now take v € (0,1/2), and set o; = i7" (i € N), so that (o) € co.
Then

E
E
T

I
E

k
42 > / Prdr> L (g2,
1

i=1 i=1 2-2y

0 Ty ol 1oy
||(y1>y27"'7yNk>HNk B
for a constant ¢ > 0. Since 7 < 1/2, we have T' ¢ M(H).

We have shown that K(H) ¢ M(H). In particular, M(H) C B(H).
Since Iy € M(H), we have M(H) ¢ K(H). (Recall again that the
space M(H) given here depends on the choice of the multi-norm.)

What is the characterization of M(H) in this case? O

EXAMPLE 4.13. Now let H be the Hilbert space £?(N), and give the
family {H" : n € N} the Hilbert multi-norm. By the theorem of Daws
given above, the Hilbert multi-norm is equivalent to the maximum
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multi-norm, and so it is easy to see that M(H) = B(H). Thus we
can give the family {B(H)" : n € N} the structure of a multi-normed
space. However, the multi-normed structure is that of the minimum
multi-norm, so this is not very interesting. U

EXAMPLE 4.14. One might guess that a form of Banach’s isomor-
phism theorem would hold for multi-bounded operators. However this
is not the case.

Let £ =¢'. Then ((E™ ] -||,) : n € N) is a multi-normed space for
the standard (1, 1)-multi-norm. In this case,

101, 5 n)ll, =n (neN).

However, let ((F™,]-],) : » € N) be the multi-normed space formed
from E by taking the minimum multi-norm (|| - [|"™ : n € N). Then

||(517'--75n)Hmin:1 (HEN)

n

This shows that the identity map Ig on E, regarded as map from E
to F belongs to M(E, F), but that I : F — E is not multi-bounded.
Indeed M(E, F) = B(E, F).

We shall now identify M(F,E). Take T" € M(F,E). The unit
ball Fyj of F is multi-bounded, and so T'(F};j) is multi-bounded in E.
Since F' is monotonically bounded (see below), it follows that Fjy is
order-bounded in E = ¢!, and so there exists x = (z,,) € ¢! with

T(y)il <z (i €N)

for each y € Fpyy; further, >>2°, @; > [|T|,,,- Fori € N, let m; : 2z — 2;6;
be the rank-one operator on ¢!, and set T; = m; o T = §; @ T"(5;), so
that

v(To) = TG llo:ll < I T°]I

where v again denotes the nuclear norm. Then T' = 3 >°, 2,7}, and
hence v(T) =Y 2, ; |T|| < co. Thus T' € N(F, E).
In summary, we have

M(E,F)=B(E,F) and M(F,FE) :N(F, E)
in this case U

However we do not know what happens when the two multi-normed
components are the same; maybe there is a multi-Banach isomorphism
theorem in this situation?
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4.6. Multi-bounded operators on Banach lattices. Again we
would like to identify the multi-bounded operators in a familiar situa-
tion.

A Banach lattice (E,||-||) is monotonically bounded if every in-
creasing net in the unit ball of Ey is bounded above, and it is Dedekind
complete if every set in Eg which is bounded above has a supremum.

Let E and F be real Banach lattices. Then T : E — F' is positive
if Te > 0 in F whenever x > 0 in E, and T is reqular if T'= T, — Ts,
where T} and Ty are positive. Such maps are necessarily continuous.
Denote the space of these maps by B,.(E, F).

THEOREM 4.15. Let E and F' be Banach lattices. ForT € B.(E, F),
set

7], = inf{||S|| : S € B(E,F)", |Tx| < S|z| (x€ ET)}.
Then (B,.(E, F),| -|,) is a Banach space, and
1], = [T} (T € B.(E, F)) .
Further, (B,(E),| -,) s a unital Banach algebra. O

It is puzzling that this Banach algebra seems to have been very
little studied; for example, it is not mentioned in [1].

THEOREM 4.16. Let E and F be Banach lattices, and suppose that
E is monotonically bounded and that F is Dedekind complete. Let
T € B(E,F). Then T is multi-bounded (with respect to the lattice
multi-norms) if and only if T is reqular, and so

M(E,F)=B,.(E,F).
Further,
1T = TN = T = 1T (T € MUELF)),

and

1T, Tl = TV - VT = [TV - VT ]
forTy,...,T,, € M(E,F) and each n € N.

COROLLARY 4.17. Take p,q with p,q > 1, set E ={? and F = (1,
and regard ((E",||-||,) : n € N) and ((F",]|-],) : n € N) as multi-
normed spaces with the standard (p,p)-multi-norm and (q, q)-multi-
norm, respectively. Let T € B(E,F). Then T € M(E, F) if and only
if T e B,(E,F), and, in this case, ||T||,., = |T||,. This applies in par-
ticular when p = q = 2 to give the multi-bounded operators on a Hilbert
space with the standard (2,2)-multi-norm as the regular operators. O
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5. Lecture - The question of the dual

5.1. The problem. We wish to find a good definition of the ‘dual’
of a multi-normed space (again with our eyes on a standard course in
functional analysis). This seems to be somewhat non-obvious.

A ‘test question’ for our future approach is the following.

Let E = LP(Q)), where  is a measure space and p > 1, and let
{E™ : n € N} have the standard (p, ¢)-multi-norm, where ¢ > p. Let
p' and ¢ be the conjugate indices to p and ¢, respectively, and set
F = E' = [”(Q). Then we expect that the ‘multi-dual’ of the family
{E™ : n € N} will be {F" : n € N}, with the standard (p’, ¢’)-multi-
norm, and hence that {E" : n € N} is ‘multi-reflexive’. Note that
the ‘standard (p/,¢’)-multi-norm’ only makes sense if ¢' > p/, and so
this suggests that there will be no multi-dual when ¢ > p, but that
we might hope that the multi-dual of {E™ : n € N} with the standard
(p, p)-multi-norm is {F™ : n € N}, with the standard (p/,p)-multi-
norm.

We also expect that the ‘multi-dual’ of the lattice multi-norm on
the family { E™ : n € N}, where E is a Banach lattice, will be the lattice
multi-norm on {(£")" : n € N} (perhaps with some mild conditions on
the lattice structure).

It is tempting to regard M(E,C) as the ‘multi-dual’ of a multi-
normed space ((E™, || - ||,,)) : » € N). However recall that M(E,C) = E'
when we regard C as having its unique multi-norm structure, and that,
as a multi-normed space, M(FE, C) just has the minimum multi-norm;
thus the approach of using this multi-normed space as a ‘dual’ is not
satisfactory.

A second temptation is to start with the above multi-normed space
((E™||-I,) : » € N) and to look at the family (((E")™, | -|.) : n € N).
But this is an even worse failure: (|||’ : n € N) is a dual multi-norm,
not a multi-norm, on {(E")" : n € N}.

Our solution to this question is to proceed through the notions of
various decompositions of normed and multi-normed spaces.

5.2. Decompositions.
DEFINITION 5.1. Let (E,||-||) be a normed space, and let
E=E & @ E
be a direct sum decomposition of E. Then the decomposition is valid if

[Giat + -+ Qopll < [l + - + x|
whenever (1, ..., € C with max |(;| =1 and x1 € Ey, ...,z € Ej.
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DEFINITION 5.2. Let ((E™, || -],) : n € N) be a multi-normed space,
and let E = FE, & --- ® Ey be a direct sum decomposition of E.

(i) The decomposition is small if

| Py + - -+ Poxgl| < ||(z1, ... 20)|l,  (21,...,26 € E).
(ii) The decomposition is orthogonal if

N(z1, ..y z)ll, = |z +- -+ x| (x1 € By, ...,z € Ey).

(Actually (ii) should be a little more complicated; see [2].)

Each valid decomposition is small with respect to the maximum
multi-norm. Both small and orthogonal decompositions are valid. It is
easy to find a small decomposition that is not orthogonal. I struggled
to find an orthogonal decomposition that is not small - I believe that
such an example exists; if so, it will be added to [2].

ExXAMPLE 5.3. Let H be a Hilbert space. Then the following are
equivalent:

(a) {H,..., Hy} is an orthogonal decomposition of H with respect
to the Hilbert multi-norm ;

(b) {Hy,..., Hy} is a small decomposition of H ;

(c) {Hy,...,Hy} is a valid decomposition of H ;

(d) {Hq,..., Hy} is orthogonal in the classical sense that

H=H 1 ---1H. 0

EXAMPLE 5.4. Let 2 be a non-empty, compact space, and consider
the multi-Banach space ((C(Q)", |- [[,,) : n € N), where (|| - |[,, : n € N)
is the lattice multi-norm. Let n € N. Then {F, ..., E,} is an orthogo-
nal decomposition of C'(Q2) with respect to this multi-norm if and only
it B, = C() (i =1,...,n), where {Qy,...,Q,} is a partition of {2
into closed subspaces. O

EXAMPLE 5.5. Take p,q with 1 < p < ¢ < oo, and set E = (P. Let
{E™ : n € N} have the standard (p, ¢)-multi-norm (|| - ||$Lp’q) :n € N),

In the case where ¢ # p, there are no non-trivial orthogonal decom-

positions of £ = ¢? and, in the case where ¢ = p, the only non-trivial
orthogonal decompositions of E are

(P =10P(S)) @ - dLP(Sy),

where {S,..., Sk} is a partition of N, and hence, regarding ¢? as a
Banach lattice, we have

0P = (P(Sy) L -+ L LP(S).
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A similar remark applies to the complex (but not to the real) spaces
LP(Q2) by a clever argument of Hung Le Pham. O

Question For a (complex) Banach lattice, is each orthogonal de-
composition of F with respect to the lattice multi-norm already a clas-
sically orthogonal decomposition?

5.3. Families of decompositions.

DEFINITION 5.6. Let (E, || -||) be a normed space, and consider a
family K = {(Eva,--., Enya) @ o € A}, where A is an index set,
ne €N (a € A), and

E:El,a@"'@Ena,a
is a direct sum decomposition of E for each o € A. The family I is
closed provided that the following conditions are satisfied:

(C1) (Es(iyar-- > Eoma)e) € K when (Eia,...,En, o) € K and
oc€B,,;

(CQ) (El,a ) E27a, E37a7 ey Ena,oz) < ]C when (El,om c. 7Ena7oc) € IC
and ng > 2;

(C3) K contains all trivial direct sum decompositions.

The families of all direct sum decompositions, of all valid decom-
positions, of all small decompositions, and of all orthogonal decompo-
sitions are closed families of decompositions.

DEFINITION 5.7. Let ((E™, || -||,) : n € N) be a multi-normed space,
and let K = {(Era, ..., En, o) : @ € A} be a closed family of orthogonal
decompositions of E. Then the multi-normed space is orthogonal with
respect to IC if

|(z1,...,z)|l,, = sug{H(PLaxl, ooy Pagoxn)|l, c na = n}
ac

for each n € N and xy,...,x, € E, where P;, is the projection onto
E;,.

In the case where the multi-normed space is orthogonal with respect
to the above family /C, it follows that we have

[(@1, @), = sup {[[Pra@1 + -+ + Pag,anl : na = n}
acA
for each n € Nand z,...,z, € E.

The above family of multi-norms ((E", |-, : n € N) specified by
a closed family KC of valid decompositions of E' is denoted by

(Il [l n € N)
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This is the multi-norm generated by K.

Query: What are the conditions on a multi-norm that ensure that it is
orthogonal with respect to some closed family of valid decompositions?

5.4. Examples of families of decompositions.

EXAMPLE 5.8. Let (£, || -||) be a normed space, and let K be the
family of all trivial orthogonal decompositions of . Then the family /C
is closed, and K generates the minimum multi-norm on {E™ : n € N}.
The multi-normed space is orthogonal with respect to K. O

THEOREM 5.9. Let E be a Dedekind complete Banach lattice, and
let the family {E™ : n € N} have the lattice multi-norm

(-1l :neN).

Then the multi-normed space ((E™, | -,,) : n € N) is orthogonal with
respect to the family of all classically orthogonal decompositions of E.
Thus the lattice multi-norm s the multi-norm generated by the family
of all classically orthogonal decompositions of E. O

5.5. The multi-dual space. Let (E,||-||) be a normed space,
and let IC be a closed family of valid decompositions of E. Then K
generates a multi-norm (|| ||, : » € N) on {E" : n € N}.

DEFINITION 5.10. Let (E,||-||) be a normed space, and let
K= {(El,ou v 7Ena,a) YOS A}

be a closed family of valid decompositions of E. The dual to the family
IC is
K ={(F, ...,E,

1,000

ma) ra e A},
The multi-norm on {(E')" : n € N} generated by K' is denoted by

(Il €N).

The multi-normed space (((E")",]|- HL,C) : n € N) is the multi-dual
space.

Thus we have the following method to find a multi-dual: Start
with a multi-normed space; find a closed family that generates it (this
is not always possible); if there is such a family, take the dual of this
family; let this new family generate a multi-norm on the family of dual
spaces. (There is a question of uniqueness because this dual multi-
norm may depend on the family that generates the original multi-norm.
However, a mild condition given in [2] ensures that the multi-dual
structure depends only on the original multi-norm, and not on the
family that generates it.)
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ExAMPLE 5.11. Take p > 1, and let F = (P, with the standard
(p, p)-multi-norm. Then the multi-normed space ((E", | -|,) : n € N)
is orthogonal with respect to the closed family /C of all classically orth-
ogonal decompositions of F.

Suppose that p > 1, and denote the conjugate index to p by ¢; set
F = ¢1. Clearly the multi-dual space of ((E", || - ”1(1]7,]))) :n € N) is the

multi-Banach space ((F™, || Hgf’*”) :n € N), where (|| - Hgf’q) :n € N) is
the standard (g, ¢)-multi-norm.

Suppose that p = 1, and set F' = £*°. Clearly the multi-dual space
of (E™, |- HS’I)) . n € N) is the multi-Banach space ((F™,]|-||™™) :
n €N) O

ExXAMPLE 5.12. Let H be a Hilbert space. Then the multi-normed
space ((H™, ||-|7') : n € N) is orthogonal with respect to the family of
all orthogonal decompositions of H. It is easy to see that the multi-dual
space of ((H™, ||- ||} : n € N) is equal to itself. O

ExAMPLE 5.13. Let E be a Dedekind complete Banach lattice, so
that £’ is also a Dedekind complete Banach lattice. Then the lattice
multi-norms on {E" : n € N} and {(E')" : n € N} are generated by
the families of all classically orthogonal decompositions of E and FE’,
respectively.

Let K be the family of all classically orthogonal decompositions of
E. Then each member of K’ is an orthogonal decomposition of E’, but
there could be more orthogonal decompositions of E’ than are given by
members of K'. When does the family K’ generate the lattice multi-
norm on E'?

Now suppose that the norm on E is order-continuous (which implies
that F is Dedekind complete). Then the family ' does generate the
lattice multi-norm on E’ Does this occur more generally? 0

5.6. Second dual spaces. The following result can be regarded
as a multi-normed form of the Hahn—Banach theorem.

THEOREM 5.14. Let ((E™,||-]|,,) : n € N) be a multi-normed space,
let IC be a closed family of orthogonal decompositions of E, and let
(- HIJ,C :n € N) be the multi-norm on {(E")" : n € N} generated by
K". Then the canonical embedding of E into E" gives a multi-isometry
if and only if the multi-normed space ((E™, | -|,,) : n € N) is orthogonal
with respect to the family IC. U
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